Skip to main content
Gratis verzending in NL vanaf € 20,-
Veilig winkelen met Thuiswinkelwaarborg
Logo
Bekijk ons hele aanbod
Onderwijs
  • Primair onderwijs
  • Voortgezet onderwijs
  • Mbo
  • Hoger onderwijs
  • NT1
  • NT2
  • Talen
  • Docentprofessionalisering
Gezondheidszorg
  • Psychologie
  • Psychiatrie
  • Medisch
  • Academy
Juridisch
  • Bestuurskunde
  • Criminologie
  • Juridisch
Management
  • Coaching
  • Management
Geschiedenis & Filosofie
  • Geschiedenis
  • Filosofie
Klantenservice
  • Service & informatie
  • Contact
  • Retourneren
  • Docentenservice
  • Snel bestellen
  • Teamviewer
Inloggen
Winkelwagen
Winkelwagen
Korting
-
Verzendkosten
Gratis
Totaalprijs
€ 0,00
Naar winkelwagen
Gratis verzending binnen Nederland vanaf € 20,-
Bekijk ons hele aanbod
Onderwijs
  • Primair onderwijs
  • Voortgezet onderwijs
  • Mbo
  • Hoger onderwijs
  • NT1
  • NT2
  • Talen
  • Docentprofessionalisering
Gezondheidszorg
  • Psychologie
  • Psychiatrie
  • Medisch
  • Academy
Juridisch
  • Bestuurskunde
  • Criminologie
  • Juridisch
Management
  • Coaching
  • Management
Geschiedenis & Filosofie
  • Geschiedenis
  • Filosofie
  • Hoger onderwijs
  • Domeinen
    • Bestuurskunde
    • Built environment
    • Communicatie, marketing en media
    • Communicatieve vaardigheden
    • Criminologie
    • Economie en management
    • English books
    • Engineering
    • Digitaal
    • Docentprofessionalisering
    • Gezondheidszorg
    • HBO ICT
    • Hogere sociale studies
    • Juridisch
    • Onderwijs en opvoeding
    • Onderzoek en statistiek
    • Projectmanagement
    • Ons complete aanbod
    • Acties
    • Nieuw
    • Verwacht
  • Boom Academie
  • Over Boom Hoger Onderwijs
    • Boom Hoger Onderwijs
    • Contact accountmanagers
    • Het team
    • Docentenservice
    • Events
    • Nieuwsbrief
  • Docentprofessionalisering
  • Artikelen & denkstof
Hoger onderwijs Nieuw Applying Statistics in Behavioural Research (2nd edition)
Terug
Applying Statistics in Behavioural Research (2nd edition)
Paperback
Oktober 2025 | ISBN 9789024473298 | 2nd edition | 584 blz.
69,95
In winkelwagen

Applying Statistics in Behavioural Research (2nd edition)

Jules Ellis, Inge Rabeling | Boom
Nieuw
Applying Statistics in Behavioural Research (2nd edition)
5% Studentenkorting
Als student krijg je korting bij aankoop van 2 of meer verschillende voorgeschreven Nederlandstalige hbo/wo-studieboeken. Lees meer
Paperback
Oktober 2025 | ISBN 9789024473298 | 2nd edition | 584 blz.
Voor 21:00 uur besteld, morgen in huis
69,95
In winkelwagen
Online boek (2 jaar toegang)
ISBN 3009010033326 | 2nd edition | 584 blz.
Direct via e-mail
55,95
In winkelwagen
Docentexemplaar aanvragen
Voor docenten met een onderwijsaccount
 
Aanvragen
Inkijkexemplaar

Inkijkexemplaar ASIBR ENG.pdf

OmschrijvingInhoudAuteur(s)
Omschrijving

Applying Statistics in Behavioural Research is written for undergraduate students in the behavioural sciences, such as Psychology, Pedagogy, Sociology and Ethology. The topics range from basic techniques, like correlation and t-tests, to moderately advanced analyses, like multiple regression and MANOV A. The focus is on practical application and reporting, as well as on the correct interpretation of what is being reported. For example, why is interaction so important? What does it mean when the null hypothesis is retained? And why do we need effect sizes?

 

A characteristic feature of Applying Statistics in Behavioural Research is that it uses the same ‘basic report’ structure over and over in order to introduce the reader to new analyses. This enables students to study the subject matter very efficiently, as one needs less time to discover the structure. Another characteristic of the book is its systematic attention to reading and interpreting graphs in connection with the statistics.

 

Many statistics books use graphical explanations, but ignore the fact that some students are simply not visually oriented. For these students, graphical explanations make things harder, not easier. Here, understanding the visualizations is addressed in separate chapters. The book is also available online through www.boomstudent.nl.

Inhoud

Contents

 

Preface for students xv

 

Part I-A Descriptive Statistics: Univariate 1

 

1 Introduction of the examples 3

1.1 Example 1: Clinical psychology (depression prevention) 3

1.2 Example 2: Education (arithmetic lesson) 7

1.3 Example 3: Human-computer interaction (mind reading) 8

1.4 Example 4: Criminology (reconviction) 10

1.5 Example 5: Developmental psychology (bullying) 11

1.6 Example 6: Social psychology (food consumption) 12

1.7 Example 7: Sociology (spirituality) 15

1.8 Example 8: Ethology (the gaze of dogs) 17

1.9 Exercises 18

 

2 Basic report of one variable 19

2.1 Learning goals 19

2.2 Definition of a basic report of one variable 19

2.3 Design 19

2.4 Degree of control 21

2.5 Name of the analysis 21

2.6 Frequency distribution 22

2.7 Number of observations 23

2.8 Histogram 24

2.9 Five-number summary 27

2.10 Outliers 29

2.11 Modified boxplot 31

2.12 Mean and standard deviation 32

2.13 Indication of normality 34

2.14 Exercises 36

 

3 Visualising statistics of one variable 43

3.1 Learning goals 43

3.2 Some rules for visualising 43

3.3 Exercises 46

 

4 Relative scores 49

4.1 Learning goals 49

4.2 Target subject and reference group 49

4.3 Percentile scores 49

4.4 Standard scores 51

4.5 Computing probabilities in a normal distribution 52

4.6 Normal scores 55

4.7 Histograms of relative scores 56

4.8 Exercises 57

 

Part I-B Descriptive Statistics: Bivariate 65

 

5 Basic report of association between two quantitative variables 67

5.1 Learning goals 67

5.2 Definition of a basic report of association between two quantitative variables 67

5.3 Design 67

5.4 Degree of control 68

5.5 Name of the analysis 68

5.6 Scatter plot 69

5.7 Regression coefficients and correlation 70

5.8 Regression line 71

5.9 Influential observations 73

5.10 Linearity 74

5.11 Exercises 76

 

6 Predicted scores and residuals 81

6.1 Learning goals 81

6.2 Predicted scores and residuals 81

6.3 Mean and variance of predicted scores and residuals 82

6.4 Proportion explained variance 84

6.5 Relation between coefficients 85

6.6 Correlation and causality 88

6.7 Exercises 88

 

7 Visualising statistics of two variables 95

7.1 Learning goals 95

7.2 Some rules for visualising 95

7.3 Exercises 97

 

8 Basic report of association between two qualitative variables 103

8.1 Learning goals 103

8.2 Definition of a basic report of association between two qualitative variables 103

8.3 Design 103

8.4 Degree of control 104

8.5 Name of the analysis 104

8.6 Contingency table 104

8.7 Conditional distributions 105

8.8 Stacked bar chart 105

8.9 Indication of strength of association 107

8.10 Exercises 108

 

9 Simpson’s paradox 111

9.1 Learning goals 111

9.2 Definition of Simpson’s paradox 111

9.3 An example of Simpson’s paradox 112

9.4 Exercises 117

 

Part II-A: Applying t-tests 119

 

10 Experiments and hypotheses 121

10.1 Learning goals 121

10.2 Within-subject designs versus between-subject designs 121

10.3 Dependent and independent variables 124

10.4 Degree of control in within-subject and between-subject designs 125

10.5 Hypotheses 129

10.6 Name of the analysis 132

10.7 Exercises 132

 

11 The t-test for paired observations 139

11.1 Learning goals 139

11.2 Definition of a basic report of a t-test for paired observations 139

11.3 Design 139

11.4 Degree of control 140

11.5 Name of the analysis 141

11.6 Scatter plot 141

11.7 Aggregated data 142

11.8 Hypotheses 144

11.9 Effect sizes 145

11.10 Test statistic 146

11.11 The p-value 147

11.12 Decision 149

11.13 Causal interpretation 153

11.14 Beyond the basic report: Check of assumptions 159

11.15 Beyond the basic report: A short report 161

11.16 Exercises 162

 

12 The t-test for independent samples 167

12.1 Learning goals 167

12.2 Definition of a basic report of a t-test for independent samples 167

12.3 Design 167

12.4 Degree of control 168

12.5 Name of the analysis 168

12.6 Scatter plot 168

12.7 Aggregated data 169

12.8 Hypotheses 171

12.9 Effect sizes 171

12.10 Test statistic 172

12.11 The p-value 172

12.12 Decision 173

12.13 Causal interpretation 175

12.14 Beyond the basic report: Check of assumptions 176

12.15 Beyond the basic report: A short report 178

12.16 Exercises 178

 

13 Visualising statistics of the t-test for independent samples 183

13.1 Learning goals 183

13.2 Some rules for visualising 183

13.3 Exercises 185

 

14 t-Tests in a mixed design 187

14.1 Learning goals 187

14.2 Description of data 187

14.3 Design and analysis 187

14.4 Exercises 189

 

Part II-B: Basic theory of statistical testing 191

 

15 Testing by enumeration 193

15.1 Learning goals 193

15.2 Definition of a basic report of enumeration 194

15.3 Population and sample 194

15.4 Aggregated data 195

15.5 Enumerated samples table 196

15.6 All possible sample means 197

15.7 Distribution of sample means and standard error 197

15.8 The p-value 198

15.9 Exactness of the p-value 199

15.10 Exercises 200

 

16 Testing by simulation 203

16.1 Learning goals 203

16.2 Definition of a basic report of simulation 204

16.3 Population and sample 204

16.4 Aggregated data 205

16.5 Simulation table 206

16.6 All simulated sample means 208

16.7 Distribution of sample means and standard error 208

16.8 The p-value 209

16.9 Exactness of the p-value 210

16.10 Exercises 211

 

17 Testing by reasoning: the z-test 213

17.1 Learning goals 213

17.2 Definition of a basic report of reasoning for the z-test 213

17.3 Population and sample 214

17.4 Aggregated data 214

17.5 Theoretical arguments 215

17.6 Distribution of sample means and standard error 217

17.7 The p-value 219

17.8 Exactness of the p-value 220

17.9 Exercises 220

 

18 Confidence interval of the mean based on the z-test 223

18.1 Learning goals 223

18.2 Formula of the confidence interval 223

18.3 Interpretation of a confidence interval 224

18.4 Exercises 226

 

19 Testing by reasoning: the t-test 227

19.1 Learning goals 227

19.2 Definition of a basic report of reasoning for the t-test 227

19.3 Population and sample 227

19.4 Aggregated data 228

19.5 Theoretical arguments 228

19.6 Distribution of sample means and standard error 230

19.7 The p-value 230

19.8 Exactness of the p-value 231

19.9 The distribution of t if the null hypothesis is false 232

19.10 Exercises 232

 

20 Confidence interval of the mean based on the t-test 235

20.1 Learning goals 235

20.2 Formula of the confidence interval 235

20.3 Interpretation of a confidence interval 236

20.4 Exercises 236

 

21 Power of a z-test 239

21.1 Learning goals 239

21.2 What is power? 239

21.3 Factors that influence power 239

21.4 Steps in computing the power 240

21.5 Power of a t-test 245

21.6 Exercises 246

 

22 Generalisation of the basic concepts in statistical testing 251

22.1 Learning goals 251

22.2 What is testing? 251

22.3 What is a statistical test? 252

22.4 Limitations of statistical tests 252

22.5 Type I and type II errors 252

22.6 Error probabilities 253

22.7 Classic requirements of statistical test 253

22.8 The steps in statistical significance tests 254

22.9 Exercises 258

 

23 The NHST controversy 261

23.1 Learning goals 261

23.2 What is a p-value? 261

23.3 Fisher versus Neyman-Pearson 266

23.4 Exercises 268

 

Part III: Simple forms of ANOVA 271

 

24 One-factor ANOVA 273

24.1 Learning goals 273

24.2 Definition of a basic report of a one-factor ANOVA 273

24.3 Design 273

24.4 Degree of control 274

24.5 Name of the analysis 274

24.6 Scatter plot 274

24.7 Aggregated data 275

24.8 Hypotheses 276

24.9 ANOVA table 277

24.10 Decision 288

24.11 Causal interpretation 289

24.12 Beyond the basic report: Post hoc tests 290

24.13 Beyond the basic report: Check of assumptions 291

24.14 Exercises 292

 

25 Visualising statistics of a one-factor ANOVA 297

25.1 Learning goals 297

25.2 Some rules for visualising 297

25.3 Exercises 300

 

26 Two-factor ANOVA 303

26.1 Learning goals 303

26.2 Definition of a basic report of a two-factor ANOVA 303

26.3 Design 303

26.4 Degree of control 304

26.5 Name of the analysis 304

26.6 Aggregated data 305

26.7 Interaction plot 306

26.8 Hypotheses 307

26.9 ANOVA table 308

26.10 Decisions 316

26.11 Causal interpretation 317

26.12 Check of assumptions 318

26.13 Exercises 318

 

27 Interaction 321

27.1 Learning goals 321

27.2 Interaction and the additive model 321

27.3 Interaction and consistency of effects 323

27.4 Interaction and the interaction plot 326

27.5 Interaction and causal models 328

27.6 Interaction and theory formation 331

27.7 Interaction and external validity 333

27.8 Interaction and follow-up analyses 333

27.9 Interaction versus correlation 334

27.10 Exercises 336

 

28 Visualising statistics of a two-factor ANOVA 341

28.1 Learning goals 341

28.2 Some rules for visualising 341

28.3 Exercises 345

 

29 Repeated measures ANOVA 347

29.1 Learning goals 347

29.2 Definition of a basic report of a repeated measures ANOVA 347

29.3 Design 347

29.4 Degree of control 348

29.5 Name of the analysis 349

29.6 Aggregated data 349

29.7 Hypotheses 350

29.8 ANOVA table 352

29.9 Decisions 358

29.10 Causal interpretation 359

29.11 Check of assumptions 359

29.12 The Efficiency of Within-Subject Designs 360

29.13 Exercises 361

 

30 Test reliability and Cronbach’s alpha 363

30.1 Learning goals 363

30.2 Situations in which Cronbach’s alpha can be relevant 363

30.3 Computation of Cronbach’s alpha 363

30.4 Interpretation of Cronbach’s alpha in classical test theory 365

30.5 Interpretation of Cronbach’s alpha in generalisability theory 368

30.6 Interpretations of Cronbach’s alpha 370

30.7 Exercises 371

 

Part IV: Introduction to GLM 375

 

31 Overview of designs and analyses 377

31.1 Introduction 377

31.2 Specification of designs 377

31.3 Concepts 378

31.4 Data layout and the arrangement of measurements 380

31.5 Elementary research questions 382

31.6 Choosing the analysis 385

31.7 Sources of variation 389

31.8 Exercises 389

 

32 Multiple Regression Analysis 391

32.1 Learning goals 391

32.2 Definition of a basic report of a multiple regression analysis 391

32.3 Design 391

32.4 Degree of control 393

32.5 Name of the analysis 393

32.6 Aggregated data 393

32.7 Hypotheses 394

32.8 ANOVA table 396

32.9 Regression weights 398

32.10 Decisions 400

32.11 Causal interpretation 401

32.12 Exercises 401

 

33 Extensions of multiple regression analysis 409

33.1 Learning goals 409

33.2 Standardised regression weights 409

33.3 Dummy coding of a single factor 412

33.4 Dummy coding of an interaction 413

33.5 Using dummy coding in multiple linear regression 414

33.6 Non-linear effects of covariates 416

33.7 Beyond the basic report: Checking assumptions 417

33.8 Beyond the basic report: A short report 418

33.9 Exercises 419

 

34 GLM-Univariate 421

34.1 Learning goals 421

34.2 Definition of a basic report of GLM-Univariate 421

34.3 Design 421

34.4 Degree of control 422

34.5 Name of the analysis 422

34.6 Aggregated data 423

34.7 Hypotheses 424

34.8 ANOVA table 426

34.9 Regression weights and corrected means 427

34.10 Decisions 432

34.11 Causal interpretation 432

34.12 Beyond the basic report: A short report 433

34.13 Exercises 434

 

35 GLM-Multivariate 441

35.1 Learning goals 441

35.2 Definition of a basic report of GLM-Multivariate 441

35.3 Design 441

35.4 Degree of control 442

35.5 Name of the analysis 443

35.6 Aggregated data 443

35.7 Hypotheses 444

35.8 Test table 446

35.9 Regression weights and corrected means 448

35.10 Decisions 449

35.11 Causal interpretation 451

35.12 Beyond the basic report: A short report 451

35.13 Beyond the basic report: Connecting the significance tests and means 452

35.14 Exercises 458

 

36 GLM-Repeated measures with a single dependent variable 463

36.1 Learning goals 463

36.2 Definition of a basic report of GLM-Repeated measures 463

36.3 Design 463

36.4 Degree of control 467

36.5 Name of the analysis 467

36.6 Aggregated data 467

36.7 Hypotheses 468

36.8 Test table 470

36.9 Regression weights and corrected means 473

36.10 Decisions 474

36.11 Causal interpretation 475

36.12 Checking assumptions 478

36.13 Beyond the basic report: A short report 479

36.14 Exercises 481

 

37 GLM-Repeated measures with several dependent variables 489

37.1 Learning goals 489

37.2 Definition of a basic report of GLM-Repeated Measures 489

37.3 Design 489

37.4 Degree of control 492

37.5 Name of the analysis 492

37.6 Aggregated data 492

37.7 Hypotheses 492

37.8 Test table 494

37.9 Regression weights and corrected means 497

37.10 Decisions 499

37.11 Causal interpretation 500

37.12 Exercises 501

 

Part V: Introduction to nonparametric tests 503

 

38 The Mann-Whitney test 505

38.1 Learning goals 505

38.2 Definition of a basic report of a MW test 505

38.3 Design 505

38.4 Degree of control 506

38.5 Name of the analysis 507

38.6 Aggregated data 508

38.7 Hypotheses 510

38.8 Test statistics 511

38.9 Standardised effect size 513

38.10 Decision 514

38.11 Causal interpretation 514

38.12 Beyond the basic report: A short report 514

38.13 Exercises 514

 

39 Chi-square test for independence 517

39.1 Learning goals 517

39.2 Definition of a basic report of Chi-square test for independence 519

39.3 Design 519

39.4 Degree of control 522

39.5 Name of the analysis 522

39.6 Aggregated data 522

39.7 Hypotheses 523

39.8 Test statistics 524

39.9 Standardised effect size 526

39.10 Decision 528

39.11 Causal interpretation 528

39.12 Beyond the basic report: A short report 529

39.13 Exercises 529

 

Appendix: Tables 530

 

Table A The standard normal distribution 530

Table B Critical values of Student’s distributions 533

Table C Random numbers 534

Table F Critical values of F-distributions 536

 

References 548

 

Index 559

Auteur(s)
Portret Jules Ellis
Jules Ellis
Dr. Jules L. Ellis is als wetenschappelijk medewerker verbonden aan de sectie Mathematische Psychologie van het Onderwijsinstituut voor Psychologie en Cognitiewetenschap van de Faculteit der Social...
Lees meer
Portret Inge Rabeling
Inge Rabeling
Inge Rabeling is a senior lecturer at Radboud University’s School of Psychology, where she teaches courses in research methods, statistics, and data analysis.
Lees meer

Gerelateerde uitgaven

Omslag leerboek psychiatrie 3e herziening Boom
Nieuw

Leerboek psychiatrie (geheel herziene druk)

Ton van Balkom, Stephan Claes, Désirée Oosterbaan, Bernard Sabbe
94,95
Bestellen
Opgelet! (3e editie)

Opgelet! (3e editie)

Mariël van Pelt, Ard Sprinkhuizen, Lisbeth Verharen, Joost Weling
22,50
Bestellen
Omslag HYPE Hessels Boom

HYPE

Christel Hessels
42,50
Bestellen
Meer

Zakelijk account

Je hebt een zakelijk account nodig om dit product te kunnen bestellen. Je bent nu ingelogd met het e-mailadres: .


Wil je dit e-mailadres gebruiken voor je zakelijk account?


Ander e-mailadres gebruiken voor zakelijk account Huidig e-mailadres gebruiken voor zakelijk account

Logo Boom uitgevers
© 2025 Koninklijke Boom uitgevers

Klantenservice

Service & informatie
Contact
Retourneren
Docentenservice
Snel bestellen
Teamviewer

Boom voor jou

Voor de boekhandel
Voor de pers
Publiceren bij Boom
Vacatures

Over Boom

Wat ons drijft
Onze historie
Onze auteurs
Onze organisatie
Gratis verzending in NL vanaf € 20,-.
Veilig winkelen met Thuiswinkelwaarborg
Algemene voorwaardenAlgemene voorwaarden zakelijkCookieverklaringDigitale contentDisclaimerPrivacy policy
Logo Thuiswinkel waarborg